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Abstract

1. Introduction


One of the most frequently used and valuable tools in signal processing is Fourier analysis. We use it to see and analyze the spectrum of the objects, filter noises, multiplexing, optics, quantum mechanics, time-frequency analysis, and so on. Fractional Fourier transform is the fractional order Fourier transform with definition Eq.(3). It can be seen as the fractional order of Fourier transform, and has many useful properties to use in applications. The detail goes for part 2.

The linear canonical transform (LCT) is more general than the FrFT. The FrFT can only do the rotation of the time-frequency distribution. The LCT can do chirp multiplication, chirp convolution, tilting, dilation…etc, but it become more complex and take more time to calculation. 
2.  Fractional Fourier Transform (FrFT)

The conventional Fourier transform pair is defined as 
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Intuitively, the αth order fractional Fourier transform 
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Since the fractional Fourier transform can be seen as the general case of the Fourier transform, it has many properties just as like the usual Fourier transform.
	Linearity
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	Inverse
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	Additive property
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	Period property
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	Commutativity
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	Associativity
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	Time shift
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	Modulation
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	Multiplication
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	Differentiation
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	Parseval’s theorem
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Now Fig.1,2 show some examples of fractional Fourier transforms. Giving the input is a rectangular function 
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Fig. 1  Fractional Fourier transform with the order (a)
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 The real part is magenta and imaginary part is blue.
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(b)
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(d)
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Fig. 2  Fractional Fourier transform with the order (a)
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 The real part is magenta and imaginary part is blue.

3. The Linear Canonical Transform (LCT)


The LCT is a more general case than fractional Fourier transform. The fractional Fourier transform has one parameter—alpha, but the LCT has four parameter to adjust the signal which we are interested in. And the LCT could use some method to reduce into the fractional Fourier transform. The definition of LCT is:
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(3.1)
with the constraint ad-bc=1.

The properties of LCT are alike the fractional Fourier transform, J. J. Ding [2] has provide a comprehensive discussion and derivation. Since the LCT can be seen as the general case of the FrFT, the properties are almost alike.
There are many applications of using LCT, such as filter design, optics, and quantum mechanics. And it can shape the time-frequency distribution of signals, such as scaling, chirp multiplication, chirp convolution, rotation and tilting. We will discuss in part 5.
4. Time-Frequency Distribution 

Although the Fourier transform can analyze signals, it can not good enough to know whether the bandwidth is occupied or available. Nowadays, the bandwidth is a critical issue, since the bandwidth is fixed. If we want to use bandwidth effectively, we should know the time-frequency distribution. There are many time-frequency distributions, such as short-time Fourier transform, Gabor transform, Wigner distribution function (WDF), and etc [3][4]. Here, we take the Gabor transform and Wigner distribution as examples. The definition of Gabor transform is:
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(4.1)
The definition of the Wigner distribution is:
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Let us give an example, the input signal is 
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Fig. 3 show the time-frequency distribution of f(t). We can see that although WDF has a higher resolution but has too many cross-terms. Another technique is called Gabor-Wigner transform proposed by J. J. Ding [5]. It is a technique to have both advantage of the Gabor transform (faster) and the WDF (higher resolution) but has less cross-term. See Fig. 4.
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Fig. 3 The time-frequency distribution of f(t), (a) using Gabor transform, (b) using WDF.
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Fig. 4 (a) using the Gabor transform (b) using WDF (c) using Gabor-Wigner transform 
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There are many differences between the Gabor transform and WDF.
	
	Advantage
	Disadvantage

	Gabor transform
	1. low computation

2. the range of the integration is limited

3. no cross term

4. linear operation
	1. complex value

2. lower resolution

	WDF 

	1. real

2. higher resolution
3. if the time/freq limited, time/freq 
of the WDF is limited with the same range
	1. higher computation

2. cross term

3. nonlinear operation


5. Filter Design

We can use the fractional Fourier transform or the LCT as tools to reshape the time-frequency distribution of signals. Then, we can use simple filters to filter noises that we do not want. For example,
Signal :
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Gs means the Gabor transform of x(t), Gn means the Gabor transform of n(t). 
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Fig. 5 (a) The Gabor transform of x(t)  (b) the Gabor transform of x(t)+n(t)  (c) after filtering (d) time domain signals.
After three fractional transforms and three filters, see Fig.5, compare to the original signal, the MSE = 0.6176.

Moreover, if we use the LCT instead of the FrFT, we can make the time-frequency distribution to do shifting, dilation, tilting and rotation, but using LCT will cost more computation time and it is now not implementable. See Fig. 6.
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Fig. 6 (a)Region representing the support of a signal. Effect of (b)scaling (c)chirp multiplication (d)chirp convolution (e)Fourier transform (f)fractional Fourier transform with order 0.5

The type of time-frequency distribution we should choose is the Gabor transform, since it has no cross term, although it has lower resolution. With cross-term, hardly can we determine which signal we should filter and which we should not.
6. Sampling


According to Nyquist sampling theorem, we know that sampling frequency should choose more than twice of the signal bandwidth. As X. G. Xia [6] and J. J. Ding [5]acutely pointed out: a nonzero signal f is bandlimited with angle 
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, then f cannot be bandlimited with another angle 
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From the definition of FrFT, we can find out if a signal is bandlimited in fractional order Fourier transform:
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We can show that the sampling rate 
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. Thus, if signals are not time-limited nor bandlimited, we can choose 
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 in order to decrease the sampling rate. The same method applies to the LCT, we can easily derived 
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Here is a simple example, we need sampling frequency equals 
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, but if we use LCT to reshape the time-frequency distribution, see Fig. 7. We will see 
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 is more smaller than 
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, thus we reduce the sampling rate.
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Fig. 7 (a) The time-frequency distribution of original signal, sampling rate must larger than 
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 (b) after the LCT, sampling rate can reduce to 
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7.Fourier Optics
8. Conclusions
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